Extensions 1→N→G→Q→1 with N=C23 and Q=C3×S3

Direct product G=N×Q with N=C23 and Q=C3×S3
dρLabelID
S3×C22×C648S3xC2^2xC6144,195

Semidirect products G=N:Q with N=C23 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C23⋊(C3×S3) = C6×S4φ: C3×S3/C3S3 ⊆ Aut C23183C2^3:(C3xS3)144,188
C232(C3×S3) = C2×S3×A4φ: C3×S3/S3C3 ⊆ Aut C23186+C2^3:2(C3xS3)144,190
C233(C3×S3) = C6×C3⋊D4φ: C3×S3/C32C2 ⊆ Aut C2324C2^3:3(C3xS3)144,167

Non-split extensions G=N.Q with N=C23 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C23.(C3×S3) = C3×A4⋊C4φ: C3×S3/C3S3 ⊆ Aut C23363C2^3.(C3xS3)144,123
C23.2(C3×S3) = Dic3×A4φ: C3×S3/S3C3 ⊆ Aut C23366-C2^3.2(C3xS3)144,129
C23.3(C3×S3) = C3×C6.D4φ: C3×S3/C32C2 ⊆ Aut C2324C2^3.3(C3xS3)144,84
C23.4(C3×S3) = Dic3×C2×C6central extension (φ=1)48C2^3.4(C3xS3)144,166

׿
×
𝔽